Segmentation of medical images using adaptive region growing

نویسندگان

  • Regina Pohle
  • Klaus D. Toennies
چکیده

Interaction increases flexibility of segmentation but it leads to undesirable behavior of an algorithm if knowledge being requested is inappropriate. In region growing, this is the case for defining the homogeneity criterion, as its specification depends also on image formation properties that are not known to the user. We developed a region growing algorithm that learns its homogeneity criterion automatically from characteristics of the region to be segmented. The method is based on a model that describes homogeneity and simple shape properties of the region. Parameters of the homogeneity criterion are estimated from sample locations in the region. These locations are selected sequentially in a random walk starting at the seed point, and the homogeneity criterion is updated continuously. This approach was extended to a fully automatic and complete segmentation method by using the pixels with the smallest gradient length in the not yet segmented image region as a seed point. The methods were tested for segmentation on test images and of structures in CT and MR images. We found the methods to work reliable if the model assumption on homogeneity and region characteristics are true. Furthermore, the model is simple but robust, thus allowing for a certain degree of deviation from model constraints and still delivering the expected segmentation result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

Evaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study

Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...

متن کامل

A New Region Growing Segmentation Algorithm for the Detection of Breast Cancer

As medical images are mostly fuzzy in nature, segmenting regions based intensity is the most challenging task. Segmentation of medical images using seeded region growing technique is increasingly becoming a popular method because of its ability to involve high-level knowledge of anatomical structures in seed selection process. In this paper, we have made improvements in region growing image seg...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Self-Learning Model-Based Segmentation of Medical Images

Interaction increases flexibility of segmentation but it leads to undesirable behaviour of an algorithm if knowledge being requested is inappropriate. In region growing, this is the case for defining the homogeneity criterion, as its specification depends also on image formation properties that are not known to the user. We developed a region growing algorithm that learns its homogeneity criter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001